

Optimising milling conditions for key Australian wheat grades

Dr John Kalitsis Manager – Engineering Services

Department of Primary Industries and Regional Development

AECIC is an initiative of the Western Australian State Government and Australia's Grains Research and Development Corporation

Optimising milling conditions for key Australian wheat rades

- Getting the maximum value out of Australian wheat
- Concept of milling potential of a wheat
- The milling potential of wheat is a function of the target flour specifications
- Is the mill extracting the maximum value out of the wheat?

Milling variables and vlour specifications

AEGIC Pilot Mill

- Milling variables:
 - Conditioning Moisture
 - Tempering time
 - Break intensity
 - Reduction intensity

Responses:

- o Flour yield
- o Ash content
- Moisture content
- Water absorption
- o Starch damage
- Protein content
- Flour stream flowrates

Models based on experimental design

Calculation Sheet - AH			
Target Specifications	Target	Actual	Units
Maximise Clean Wheat Yield		76.81	%
Total Ash (%DMB) less than	0.55	0.550	%DMB
Starch Damage greater than	7	/ 7.14	%
Starch Damage less than	12	7.14	%
Water absorption greater than	59	59.00	%
Water absorption less than	100	59.00	%
Maximum Moisture Content	14.5	14.50	%
Protein Content		13.83	%DMB
Protein Asls		11.79	%
Ash Content As Is (%)		0.470	%
			~ /
Pilot Mill Settings			
Conditioning Moisture		16.8	%moisture
Tempering Time		22.3	Hours
Break Roll Intensity		1.73	
Reduction Roll Intensity		1.71	
1st Break Release		53	%
2nd Break Release		54	%
Roll Gaps			
1st Break		259	μm
2nd Break		223	μm
3rd Break		100	μm
4th Break		25	μm
Sizings		200	μm
A-Reduction		86	μm
B-Reduction		43	μm
C-Reduction		43	μm

- Response Surface Methodology (RSM)
- Model development
- Models used to determine optimal yield for target flour specifications
- Non-linear optimisation
 - Evolutionary
 - Generalised Reduced
 Gradient

Milling potential as a function of ash content

Australian Export Grains Innovation Centre

aedic

Wheat samples evaluated

	units	AH	ASW	
Protein	% (11%mb ¹)	12.91	7.63	
Moisture	%	9.64	10.49	
Starch	% (dmb²)	70.02	73.81	
Wet Gluten	% (dmb²)	38.04	22.29	-
Zeleny	mL	67.58	27.83	-
Hardness Index		72.46	79.63	
Kernel Diameter	mm	2.58	2.98	
300 Kernel Weight	mg	37.69	49.73	

¹ 11% moisture basis

² Dry matter basis

Milling Potential of ASW and AH wheat samples as a function of ash content

Milling Potential of ASW and AH wheat samples as a function of ash content

Milling Potential of ASW and AH wheat samples as a function of ash content

Australian Export Grains Innovation Centre

Milling Potential of ASW and AH wheat samples as a function of ash content

Conclusion

- Using the milling potential helps match wheat selection with final flour specifications
- Not all wheat is equally suited to all flour types
- Helps inform millers on whether they are getting the most out of the wheat

E: john.kalitsis@aegic.org.au

Department of Primary Industries and Regional Development

AEGIC is an initiative of the Western Australian State Government and Australia's Grains Research and Development Corporation

aegic.org.au